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Abstract
The spectrum of large-radius excitons in an individual semiconducting single-
walled carbon nanotube (SWCNT) is described within the framework of an
elementary potential model, in which an exciton is modelled as a bound state
of two oppositely charged quasi-particles confined on the tube surface. Due to
the parity of the interaction potential the exciton states split into the odd and
even series. It is shown that for the bare and screened Coulomb electron–hole
(e–h) potentials the binding energy of even excitons in the ground state well
exceeds the energy gap. The factors preventing the collapse of single-electron
states in isolated semiconducting SWCNTs are discussed.

PACS number: 78.67.Ch

1. Introduction

Many experimental papers on the optical absorption in SWCNTs describe obtained results
in terms of band-to-band direct transitions between single-particle states, though it is clear
that the inherent to 1D systems strong interparticle interaction cannot be neglected. It seems
obvious that the strong electron–hole attraction should bind electron–hole pairs in SWCNTs
into Wannier–Mott-like excitons. Moreover, the exciton contributions were already revealed
experimentally in optical absorption spectra [1, 2], and in spectra of fluorescence [3–5] of
individual SWCNTs, and the exciton properties were studied by the Raman spectroscopy
[6]. There are also some works devoted to the theoretical study of excitons in CNTs [7–12].
However, as follows from the results of the latter a simple translation of basic hydrogen-
like models of 3D large-radius excitons fails to function in one dimension without a certain
specification. Recall that once the centrum of mass has been removed and the screening effect
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from the tube charges is ignored the 1D model exciton Hamiltonian may be formally given by
the expression

Ĥ = − h̄2

2µ

d2

dz2
− e2

ε

1

|z| , (1.1)

where µ is the exciton reduced effective mass and ε is the dielectric constant of medium
surrounding the tube. The functions φ(z) from the domain of differential expression (1.1) in
L2(−∞,∞) are twice differentiable on the semi-axis (−∞, 0), (0,∞) and belong together
with their derivatives for each δ > 0 to the subspaces L2(−∞,−δ), L2(δ,∞), and also satisfy
a certain boundary condition at the point z = 0, which provide the self-adjointness of Ĥ . If
there are no reasons for the breaking of the tube reflection symmetry or, in other words, of
the action and reaction law, then only those self-adjoint extensions of the above differential
operator are physically admissible, for which the subspaces of even and odd functions from
L2(−∞,∞) are invariant with respect to Ĥ .

For less singular than the bare Coulomb even potentials V (z) = V (|z|), for example, for
potentials satisfying the condition∫ L

0
|V (z)|2 dz < ∞, 0 < L < ∞,

the corresponding Hamiltonians Ĥ could be represented as the sum of the standardly defined
self-adjoint operator of kinetic energy and the subordinated operator of potential energy that
is the multiplication operator by V (z). In such cases, the functions from the domains D(Ĥ ) of
Ĥ are continuous and have a continuous first derivative at z = 0, and the corresponding odd
and even functions from D(Ĥ ) should satisfy the natural boundary conditions φ(0) = 0 and
φ′(0) = 0, respectively. The spectra of bound states are then the set of negative eigenvalues
of the boundary problem for the differential equation

− h̄2

2µ

d2

dz2
φ(z) − V (z)φ(z) = Eφ(z)

on the semi-axis (0,∞) with the boundary conditions φ(0) = 0 for the odd series and
φ′(0) = 0 for the even series, respectively.

For the Coulomb potential in one dimension, the operator of the potential energy is not
subordinated to that of the kinetic energy and the Hamiltonian Ĥ cannot be simply represented
as their sum, and hence the Hamiltonian in this case becomes indeterminate. Among self-
adjoint extensions of the differential operator (1.1) there are infinitely many of those for which
subspaces of odd and even functions are invariant. These extensions differ in self-adjoint
boundary conditions at z = 0 and, accordingly, they can be distinguished by energies of their
ground states. Since functions from the domain of any such extension are non-differentiable
at z = 0, it is impossible without additional physical considerations to single out the unique
‘correct’ among suitable self-adjoint boundary conditions at z = 0.

For the bare Coulomb potential one of the possible extensions compatible with the
z-inversion symmetry is the decaying extension Ĥ 0 defined by the boundary condition:
φ(0) = 0, that is for any φ from the domain of Ĥ 0 we have

(Ĥ 0φ)(z) = −(h̄2/2µ)φ′′(z) + (e2/εz)φ(z), z < 0;
(Ĥ 0φ)(z) = −(h̄2/2µ)φ′′(z) − (e2/εz)φ(z), z > 0;
φ(−0) = φ(+0) = 0.

(1.2)

This Hamiltonian was obtained in [13, 14] as a result of formal passage to the limit for
some sequences of 1D Hamiltonians with regularized at z = 0 Coulomb potentials. Note



Large radius excitons in single-walled carbon nanotubes 10521

that not only subspaces of odd and even functions, but also the subspaces of functions with
supports on the positive and negative semi-axes are invariant with respect to Ĥ 0. In other
words, for the zero boundary condition at the origin Ĥ 0 is isomorphic to the orthogonal sum
of two reduced ‘classic’ Schrödinger operators for s-states of the hydrogen atom. As follows,
the negative spectrum for this Hamiltonian is the Balmer series, each eigenvalue of which
is doubly degenerate. It is worth mentioning that if the states of electron–hole pair would
be governed by the Hamiltonian Ĥ 0, then excitons in a tube would be subdivided into the
conserved ‘left’ and ‘right’ ones subject to the positional relationship of electron versus hole.

In section 2 of this paper, we consider another extension Ĥ 1, which in the odd sector
coincides with Ĥ 0 but in the even sector is defined on the subset of continuous functions
satisfying at z = 0 the boundary condition

lim
z↑0

d

dz
[(1 − 2Az ln(2A|z|))φ(z)] = lim

z↓0

d

dz
[(1 + 2Az ln(2Az))φ(z)] = 0, A = e2µ/h̄2.

(1.3)

For Ĥ 1 the spectrum of bound states of the even series appeared to be close to that for the
two-dimensional hydrogen atom [15] for the states with zero angular momentum. This fact
as well as the transition of (1.3) to the Neumann condition φ′(−0) = φ′(+0) = 0 as A → 0
is not yet a valid reason to consider Ĥ 1 as an appropriate primordial Hamiltonian for the
large-radius exciton in nanotubes. However, the modified electron–hole interaction potential
V (z) that accounts that these particles actually are not pointwise and their charges are smeared
along infinitesimal narrow bands on the tube surface, appeared to be locally quadratically
integrable. In the case of nanotubes of small diameters the Hamiltonian with this potential
gives the energies of ground and first excited states of the standardly defined even series, which
differ slightly from those for Ĥ 1.

However, it turned out that the ground-state energy of even excitons, calculated for
individual semiconducting carbon nanotubes in vacuum with this potential and without the
account of the effect of screening by the nanotube electrons, is just two times greater of
the energy gaps. Therefore, in sections 3 and 4 we consider different forms of screening of the
electron–hole interaction inside individual semiconducting nanotubes (e.g., we calculate the
dielectric function of individual SWCNTs). The results on the ground state of even excitons,
given in section 5 for some individual carbon nanotubes, show that the account of screening
does not help and the binding energy of even excitons remains greater of the energy gap. This
may mean the instability of single-electron states in isolated semiconducting carbon nanotubes
in the vicinity of the energy gap against the exciton formation. In the last section of the paper
we discuss factors preventing the collapse of single-electron states in isolated semiconducting
SWCNTs.

2. Exciton spectrum and eigenfunctions in the Coulomb limit

Let ψv(k, r) and ψc(k, r) be the Bloch wavefunctions of the valence and conduction band
electrons of a semiconducting nanotube, respectively. Recall that

ψv,c(k, r) = exp(ikz)uv,c(k, r),

where uv,c(k, r) are periodic functions with the period a along the tube axis, which is assumed
to coincide with the z-axis. The wavefunctions of rest exciton can be represented as the
following superposition:

�(r1, r2) =
∫ π/a

−π/a

�(k)ψ∗
c (k, r1)ψv(k, r2) dk. (2.1)
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The envelope function �(k) in (2.1) satisfies the equation

(εc(k) − εv(k))�(k) +
a

2π

∫ π/a

−π/a

J (k, k′)�(k′) dk′ = Eexc�(k), (2.2)

where εv(k) and εc(k) are band energies of electrons with quasi-momentum k and the kernel

J (k, k′) = − lim
L→∞

a

L

∫
EL

3

∫
EL

3

ψc(k, r1)ψ
∗
v (k, r2)

e2

|r1 − r2|ψ
∗
c (k′, r1)ψv(k

′, r2) dr1 dr2,

EL
3 = E2 × (0 < z < L)

corresponds to the two-particle system interacting with each other through the bare Coulomb
potential.

In the so-called long-wave approximation (2.2) takes the form(
Eg +

h̄2k2

2µ

)
�(k) +

1

2π

∫ ∞

−∞
Ṽ (k − k′)�(k′) dk′ = Eexc�(k), (2.3)

where Eg and µ are the gap width and the reduced effective mass of electron and hole,
respectively, and Ṽ (k) is the Fourier transform of the effective potential

V (z) = −
∫

Ea
3

∫
Ea

3

e2

((x1 − x2)2 + (y1 − y2)2 + (z + z1 − z2)2)1/2

× |uc(0, r1)|2|uv(0, r2)|2 dr1 dr2. (2.4)

We see from (2.3) that (2.2) is equivalent to the 1D Schrödinger equation

− h̄2

2µ
φ′′(z) + V (z)φ(z) = Eφ(z), E = Eexc − Eg (2.5)

on the real axis. Note that independently on the tube radius and chirality

V (z)|z→±∞ � −e2/|z| + o(1/|z|).
Contrary to the 3D case [16] direct using of equation (2.5) with potential V0(z) = −e2/|z|
for modelling of exciton states in nanotubes is impossible without a more accurate definition
of the exciton Hamiltonian for short distances between the electron and hole. The matter
is that due to the Coulomb singularity of V0(z) the one-dimensional Schrödinger operator
for a hydrogen-like system remains indeterminate without imposing of certain (self-adjoint)
boundary conditions onto wavefunctions at the point z = 0. So to define the 1D exciton
Hamiltonian we should either specify such a boundary condition or ‘soften’ the singularity of
potential at short distances with respect to expression (2.4) and screening effects from tube’s
electrons. As it was mentioned above for parity of the Coulomb potential the exciton states
are split into two series: even φ(−z) = φ(z) and odd φ(−z) = −φ(z). Despite the Coulomb
singularity at z = 0, any solution of the equation

d2φ

dz2
+

(
2kκ

|z| − κ2

)
φ = 0,

k = µe2/κh̄2, κ =
√

2µ|E|/h̄2

(2.6)

has continuous left and right limits at z = 0. Therefore continuous solutions of the odd series
must satisfy the boundary condition

φ(0) = 0. (2.7)

Thus, the spectrum of bound states of the odd series coincides with that of the bound s-states of
a hydrogen-like atom and this is also true for the corresponding wavefunctions on the positive
semi-axis (up to the factor 1/

√
2).
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However, with the Coulomb singularity the part of Hamiltonian on the subspace of even
functions is not uniquely determined even under the condition that the functions from its
domain are continuous everywhere on the real axis, including the point z = 0. If the potential
in the concerned problem would be nonsingular or, at least, integrable, then the boundary
condition φ′(0) = 0 would be natural for the determination of this part. However, any
non-zero at z = 0 solution of (2.6) is not differentiable at z = 0.1

Attempts to choose a proper boundary condition at z = 0 for the even part of Hamiltonian
by some parity-preserving regularization of the Coulomb potential in the δ-vicinity of the
origin give non-unique results, depending on ways of regularization and passing to the limit
as δ → 0. To see this let us consider the regularized potential

Vδ(z) =
{

−e2/|z|, |z| > δ;
−e2/|δ|, |z| < δ.

Since V0(z) � Vδ(z), then the least eigenvalue Eo(δ) of the odd series for the Schrödinger
operator Ĥ δ with the potential Vδ is not less than the energy of the ground state of the
hydrogen-like atom, that is

−µe4

2h̄2 � Eo(δ).

Let us define further the even part of the Schrödinger operator Ĥ δ with potential Vδ , assuming
that even functions from its domain satisfy the boundary condition

φ′(−0) + hδφ(−0) = −φ′(+0) + hδφ(+0) = 0. (2.8)

Taking any

Ee < −µe4

2h̄2 � Eo(δ),

we can arrange by a suitable choice of hδ in (2.8) that Ee be an eigenvalue of Ĥ δ . To this end
we note that for z > δ the eigenfunction φe(z) corresponding to the eigenvalue Ee coincides
up to a constant factor with the decreasing as z → ∞ solution of (2.6) with E replaced by Ee,
that is

φe(z) = CWke,1/2(2κez),

where Wke,1/2 is the Whittaker function. At the same time for 0 < z < δ we have

φe(z) = C ′[cos qz + (hδ/q) sin qz],

q =
√

(2µ/h̄2)(e2/δ − |Ee|).
The continuity condition for the logarithmic derivative of φe(z) at z = δ yields

hδ = q
2κeW

′
ke,1/2(2κeδ) cos qδ + qWke,1/2(2κeδ) sin qδ

qWke,1/2(2κeδ) cos qδ − 2κeW
′
ke,1/2(2κeδ) sin qδ

∣∣∣∣∣
δ↓0

≈ −2κeke ln(2κekeδ). (2.9)

As Ee < Eo(δ) and eigenvalues of even and odd series alternate we conclude that Ee is the
least eigenvalue of Ĥ δ . We see that by an appropriate choice of hδ we obtain a sequence of
Hamiltonians with regularized potentials and the fixed least eigenvalue.

1 Actually, in one dimension the representation of Hamiltonian as the sum of operators of kinetic and potential
energies is strictly speaking impossible for potentials with Coulomb singularities.
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As a nearest analogue of the boundary condition φ′(0) = 0 for wavefunctions of the even
series we take with the account of (2.9):

lim
z→0

d

dz
[(1 + 2Az ln(2Az))φ(z)] = 0, (2.10)

where A = e2µ/h̄2. The Schrödinger differential operator Ĥ in L2(0,∞) defined by this
boundary condition is self-adjoint.

Indeed, using the von Neumann formulae [17] it is easy to verify that the functions
from the domain D(Ĥ ) of each self-adjoint extension Ĥ of the differential operator (1.1) in
L2(0,∞) are continuous on the semi-axis [0,∞).

Let φ1, φ2 ∈ D(Ĥ ), that is Ĥφ1, Ĥφ2 ∈ L2(0,∞). By continuity of φ1, φ2 at z = 0
and (2.10) we get∫ ∞

0
[(Ĥφ1)(z)φ

∗
2 (z) − φ1(z)(Ĥφ2)

∗(z)] dz

= lim
δ↓0

∫ ∞

δ

[(Ĥφ1)(z)φ
∗
2 (z) − φ1(z)(Ĥφ2)

∗(z)] dz

= lim
δ↓0

[φ1(z)φ
′∗
2 (z) − φ′

1(z)φ
∗
2 (z)]z=δ

= lim
δ↓0

{
1

1 + 2Az ln 2Az

[
φ1(z)

d

dz
[(1 + 2Az ln 2Az)φ∗

2 (z)]

−φ∗
2 (z)

d

dz
[(1 + 2Az ln 2Az)φ1(z)]

]}
z=δ

= 0.

Therefore Ĥ is a symmetric operator. Let us assume that Ĥ is not self-adjoint. Then for each
non-real ω there is a solution of the equation

− h̄2

2µ

d2W

dz2
− e2

|z|W = ωW,

which belongs to L2(0,∞) and orthogonal to the linear set (Ĥ − ω)D(Ĥ ) [17]. But it is easy
to verify as above that such a solution is identically equal to zero. Thus energy levels of the
even series are defined as eigenvalues of Hamiltonian

Ĥ = − h̄2

2µ

d2

dz2
− e2

|z| ,

on a set of twice differentiable functions φ(z) at semi-axis (0,∞), which satisfy the
boundary condition (2.10). At semi-axis (−∞, 0) we, naturally, consider even continuation
of corresponding eigenfunctions.

Evidently, the above choice of the even part of the Hamiltonian is not exceptional. As was
mentioned above, for example, we can take the even extension onto the negative semi-axis of
the wavefunctions satisfying the zero boundary condition at z = 0 and obtain in this way an
even part of Hamiltonian with the same spectrum as that for the odd part [13]. The choice of
a concrete boundary condition can be done exceptionally on the basis of physical reasons.

Using the asymptotic expansion of the Whittaker function Wk,1/2(2κz) for z → 0 we get
from condition (2.7) the eigenvalues of the odd series:

1

�(1 − k)
= 0; ⇒ 1 − k = −n, n = 0, 1, 2, . . . ;

⇒ En = −µe4

2h̄2

1

n2
, n = 1, 2, 3, . . . , (2.11)
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and from condition (2.10) the eigenvalues of the even series:

Ep = −µe4

2h̄2

1

p2
, (2.12)

where p, according to (2.10), is defined from equation

−p

∞∑
j=1

1

j (j − p)
+

1

2p
− ln p + γ − 1 = 0,

⇒ p = n + 1/2 + (n), n = 0, 1, 2, . . . . (2.13)

Here γ � 0.5772 is Euler’s constant, and (n) is a slowly increasing function of the integer
number n, which in the range n ∈ [0, 10] obtains values from −0.013 to 0.0156.

The corresponding normalized wavefunctions φn(z), which satisfy equation (2.6) and
condition (2.7) are given by

φn(z) =
(

A

2n(n − 1)2(n − 1)!2

)1/2

L1
n−1

(
2Az

n

)
2Az

n
exp

(
−Az

n

)
n = 2, 3, 4, . . .

=
√

2A3/2z exp(−Az) n = 1, (2.14)

where L1
n−1(2Az/n) is the generalized Laguerre polynomial. For the even series, according

to (2.6) and (2.10), we obtain

φp(z) = CpWp,1/2

(
2Az

p

)
, (2.15)

where Cp is a normalization factor.
The analytic simplification of (2.4), which depends on the tube radius R0 but is independent

of its chirality is the potential

VR0(z) = − e2

4π2|z|
∫ 2π

0

∫ 2π

0

dα1 dα2(
1 +

(
4R2

0

/
z2

)
sin2 α1−α2

2

)1/2 (2.16)

that was obtained from (2.4) under the assumption that the charges of electron and hole
participating in the formation of exciton are smeared uniformly along infinitesimal narrow
bands on the tube wall. This potential is the simplest approximation to the bare Coulomb
potential, which accounts the finiteness of the tube diameter. Note that contrary to the bare
Coulomb potential this one has only logarithmic singularity at the origin. Since VR0(z)

is an integrable function then solutions of the Schrödinger equation with this potential are
continuously differentiable at z = 0, and the boundary condition for the even series in this
case is φ′(0) = 0. For nanotubes with rather small diameters the negative eigenvalues of
equation (2.5) with potential VR0(z) appeared to be close to those for equation (2.6) (see
section 5 and tables 1 and 2). For both of the equations the minimal eigenvalue of the
even series well exceeds the energy gap. This may mean that the single-electron states in
semiconducting SWCNTs in the vicinity of the energy gap are unstable with regard to the
formation of excitons. However, the screening of e–h interaction by the tube electrons could
result in the shift of exciton levels into the gap. To make clear whether it is so, we consider
further different forms of screening of the potential (2.16).

3. Nanotube dielectric function

First, we obtain the nanotube dielectric function within the framework of the Lindhard method
(the so-called RPA); then, in the limiting case of small wavenumber values we get the Thomas–
Fermi screening theory for charged particles in semiconducting SWCNTs.
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Following the Lindhard method, to obtain the e–h interaction potential ϕ(r), screened by
the electrons of the quasione-dimensional nanotube lattice, we consider the one-dimensional
Fourier transform of the Poisson equation

(q2 − 2D)ϕ(q, r2D) = 4π(ρext(q, r2D) + ρ ind(q, r2D)), (3.1)

where r2D is the transverse component of the radius vector, q is the longitudinal component
of wave vector, ρext(q, r2D) is the one-dimensional Fourier transform along the tube axis of
the density of extraneous charge ρext(z, r2D) and ρ ind(q, r2D) is that of the charge density
induced by the extraneous charge. Further, we will assume that ρext is axial symmetric,
ρext(q, r2D) = ρext(q, r2D), and localized in the small vicinity of the tube wall. As follows
ϕ(q, r2D) and ρ ind(q, r2D) depend on r2D only through r2D and besides whatever the case ρ ind

is localized at the tube wall. By (3.1) the screened e–h interaction potential may be written as

ϕ(q, r2D) = 4π

∫
E2

(ρext(q, r′
2D) + ρ ind(q, r′

2D))G0(q, r2D, r′
2D) dr′

2D, (3.2)

where G0(q, r2D, r′
2D) = (1/2π)K0(|q||r2D−r′

2D|) is the Green function of the 2D Helmholtz
equation and K0 is the modified Bessel function of the second kind.

Let E0
s (k) and �0

k,s(r) = (1/
√

N) exp(ikz)u0
k,s(r) be the band energies and the

corresponding Bloch wavefunctions of the nanotube π -electrons and Es(k),�k,s(r) be those
in the presence of the extraneous charge. Then

ρ ind(q, r2D) = −e

∫ L

0
exp(−iqz)

∑
k,s

[
f (Es(k))|�k,s(r)|2 − f

(
E0

s (k)
)∣∣�0

k,s(r)
∣∣2]

dz, (3.3)

where f is the Fermi–Dirac function, L is the length of CNT and s numbers single-electron
bands (N is the number of unit cells in the nanotube). In the linear in ϕ approximation, we get

ρ ind(q, r2D) = −e2

L

∑
k,s,s ′

Bs,s ′(k, k − q, a)

Eg;s,s ′(k)

×
∫ a

0
u∗

v;k−q,s(z, r2D)uc;k,s ′(z, r2D) dzϕ(q, R0), (3.4)

where a is the longitudinal period of nanotube and

Bs,s ′(k, k − q, a) =
∫

E2

∫ a

0
u∗

c;k,s ′(z, r2D)uv;k−q,s(z, r2D) dz dr2D,

Eg;s,s ′(k) = Ec;s ′(k) − Ev;s(k).

Taking into account the axial symmetry of ρext(q, r2D) and ρ ind(q, r2D) and their localization
near the nanotube wall (r2D = R0) we obtain from (3.2) and (3.4) that

ϕ(q,R0) = ϕ̃(q, R0) + 2I0(|q|R0)K0(|q|R0)

∫
E2

ρ ind(q, r2D) dr2D, (3.5)

where ϕ̃(q, R0) is the Fourier transform of the electrostatic potential induced by ρext and I0 is
the modified Bessel function of the first kind. We see that

ϕ(q,R0) = ϕ̃(q, R0)

εR0,a(q)
,

εR0,a(q) = 1 +
e2

π

∑
s,s ′

∫ π/a

−π/a

|Bs,s ′(k, k − q, a)|2
Eg;s,s ′(k)

dk I0(|q|R0)K0(|q|R0).

(3.6)
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In the limiting case of small wavenumbers

|Bs,s ′(k, k − q, a)|2q→0 ≈ |Us,s ′(k, a)|2q2,

|Us,s ′(k, a)|2 =
∣∣∣∣∫

E2

∫ a

0
u∗

c;k,s ′(z, r2D)
∂

∂k
uv;k,s(z, r2D) dz dr2D

∣∣∣∣2

.
(3.7)

Note that Us,s ′(k, a) is nonzero only for the mirror bands, that is Us,s ′(k, a) = Us(k, a)δs,s ′ .
Using the orthogonality of the Bloch wavefunctions and applying the Schrödinger equation
for �k,s(z, r2D) yields

Us(k, a) = ih̄2N

meEg;s,s(k)

∫
E2

∫ a

0
�∗

c;k,s(z, r2D)
∂

∂z
�v;k,s(z, r2D) dz dr2D. (3.8)

Hence, the screened quasione-dimensional electrostatic potential induced by a charge e0,
distributed with the density

ρext(r) = e0

2πR0
δ(z)δ(r2D − R0),

in accordance with (3.6) and (3.7), is given by the expression

ϕ(z) = e0

πR0

∫ ∞

−∞

I0(|q|)K0(|q|) exp(iqz/R0)

1 + gaq2I0(|q|)K0(|q|) dq (3.9)

with

ga = e2h̄4

πm2
eR

2
0

∑
s

∫ π/a

−π/a

1

E3
g;s,s(k)

∣∣∣∣〈�c;k,s

∣∣∣∣ ∂

∂z

∣∣∣∣�v;k,s

〉∣∣∣∣2

dk. (3.10)

This potential was calculated using the single-electron energy spectrum and wavefunctions,
obtained in [18]. The ground-state exciton binding energy, calculated from (2.5) with the
screened potential (3.9), remains noticeably greater than the energy gap (see section 5 and
table 4).

4. Screening by free charges

Free charges may appear in semiconducting nanotubes at rather high temperatures T. So
here we will obtain the self-consistent screened potential of e–h interaction depending on the
nanotube diameter and medium temperature.

To take into account the screening of e–h interaction potential ϕ(r) by free charges (by
intrinsic electrons and holes) we consider the Poisson equation

−ϕ + κ2R0δ(r − R0)ϕ = 4πeδ(r − r0), (4.1)

where we suppose again that the screening particles (electrons and holes) and the screened
e–h pair itself are localized at the surface of cylinder (nanotube’s wall) with the radius R0.
Here κ2 = (4πe2n0/kBT )(1/πR2

0) and

n0 = (√
2π

√
m∗

hm
∗
ekBT

/
2πh̄

)
exp(−Eg/2kBT )

is the one-dimensional analogue of the particle concentration in the intrinsic semiconductors.
We assume that CNTs can be treated as such semiconductors.

Equation (4.1) (without factor 4πe) can be represented in the equivalent form:

G(r, r0) = G0(r, r0) − κ2R0

∫
E3

G0(r, r′)δ(r ′ − R0)G(r′, r0) dr′, (4.2)
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Figure 1. The e–h interaction potentials versus the electron–hole distance z for the zig-zag
nanotube (28, 0): dashed line—the screened one calculated by (4.5) for T = 550 K; black
circles—the screened potential (3.9); solid line—the Coulomb unscreened averaged potential
(2.16); dot-dashed line—the bare Coulomb potential from (2.6).

where G0(r, r0) = 1/4π |r − r0| is the Green function of the Poisson equation without
screening (κ = 0). After averaging over axial and radial components of the radius vector and
several Fourier transforms, we obtain the following one-dimensional screened e–h interaction
potential ϕ(z):

ϕ(z) = 1√
2π

∫ ∞

−∞

ϕ̃0(k) exp(ikz)

1 + (2π)3/2(κR0)2ϕ̃0(k)/4πe
dk, (4.3)

where ϕ̃0(k) is the Fourier transform of the average unscreened potential (2.16):

ϕ̃0(k) = 4πe

8π2

∫ 2π

0

1√
2π

∫ ∞

−∞

exp(−ikz̃)

|z̃|(1 +
(
4R2

0

/
z̃2

)
sin2(α/2)

)1/2 dz̃ dα

= 4πe

(2π)3/2
I0(|k|R0)K0(|k|R0), (4.4)

where I0(|k|R0) and K0(|k|R0) are the same modified Bessel functions of the first and the
second kind, respectively. Hence, the e–h interaction potential screened by free charges for
any semiconducting SWCNT is given by

ϕ(z) = e

πR0

∫ ∞

−∞

I0(|k|)K0(|k|) exp(ikz/R0)

1 + (κR0)2I0(|k|)K0(|k|) dk. (4.5)

The screened potential (4.5) can be used for the calculation of the large-radius exciton binding
energies in the ground and excited states for the large-diameter SWCNTs at high temperatures.
The ground-state binding energy, calculated from (2.5) with the screened potential (4.5),
remains greater than the energy gap (see section 5 and table 5).

To compare different obtained potentials, we produce figure 1 that shows them plotted
point by point for the semiconducting (28, 0) nanotube in comparison with the bare Coulomb
potential. Figure 1 also shows that the above mentioned screened potentials slightly differ
from the bare Coulomb potential when the distance between the electron and hole is large.
This fact justifies the bare Coulomb large-radius exciton model given in the beginning.

5. Calculation results: screening influence

Electronic structure of nanotubes, electron and hole effective masses and energy gap
magnitudes were obtained in [18] within the framework of the zero-range potential method
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Table 1. Exciton binding energies according to (2.6).

Chirality Eg (eV) E0;even (eV) E1;odd (eV) E1;even (eV) E2;odd (eV)

(7, 0) 1.3416 −2.8343 −0.6722 −0.294 −0.168
(6, 5) 1.1017 −2.9253 −0.6938 −0.3034 −0.1734
(28, 0) 0.3674 −0.9484 −0.2249 −0.0983 −0.0562

Table 2. Exciton binding energies according to the Schrödinger equation with the potential (2.16).

Chirality 2R0(nm) E0;even (eV) E1;odd (eV) E1;even (eV) E2;odd (eV)

(7, 0) 0.548 −2.7894 −0.5365 −0.2955 −0.1507
(6, 5) 0.7468 −2.2503 −0.5071 −0.2829 −0.1488
(28, 0) 2.192 −0.7567 −0.1668 −0.0928 −0.0486

Table 3. Exciton radii rn ∼ n/2A in units of 2R0.

Chirality r0;even r1;odd r1;even r2;odd

(7, 0) 0.4759 0.9772 1.4776 1.9545
(6, 5) 0.3383 0.6948 1.05 1.3895
(28, 0) 0.3556 0.73 1.1 1.46

Table 4. Exciton binding energies for nanotube (28, 0) according to (3.9) and (3.10).

Chirality ga E0;even (eV) E1;odd (eV) E1;even (eV) E2;odd (eV)

(28, 0) 0.6 −0.6869 −0.1799 −0.0952 −0.0501

for the Bloch wavefunctions [19]. Using those values of effective masses and energy gaps,
we have calculated the unscreened and screened e–h interaction potentials and corresponding
exciton binding energies of the ground and excited states, which either explicitly or implicitly
depend on parameters of concrete semiconducting SWCNT (chirality, radius, reduced effective
mass, band gap magnitude) and the temperature of medium (in section 4). Here, we present
results of these calculations.

The numerically calculated values of the exciton binding energies of the ground and
excited states according to (2.6) are given in table 1.

These results unambiguously show that the binding energies in the even ground state for
any of the selected semiconducting SWCNTs are much greater than the corresponding energy
gaps in the bare Coulomb limit (2.6).

Further, the numerically calculated values of exciton binding energies at the ground and
excited states according to the wave equation with the potential (2.16) are given in table 2.
It can be seen from table 2 that the discrepancies with the analogous results in table 1 are
more considerable for nanotubes with larger diameters, because the wave equation with the
potential (2.16) tends to (2.6) if R0 → 0.

We can see also from table 2 that the ground-state binding energies are larger than the
corresponding energy gaps even if the finiteness of nanotubes is taken into account.

Table 3 shows that the exciton radii are comparable with the corresponding nanotubes
diameters; thus they are much greater than the nanotube lattice parameter 0.142 nm. Therefore
the large-radius exciton theory methods are appropriate for the treatment of the SWCNTs
exciton problem.

As illustration we have calculated the binding energies for the (28, 0) zig-zag nanotube
with the account of the nanotube dielectric function (table 4).
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Table 5. Exciton binding energies for the nanotube (28, 0) according to (4.5) for T = 550 K.

Chirality κR0 E0;even (eV) E1;odd (eV) E1;even (eV) E2;odd (eV)

(28, 0) 0.38 −0.5549 −0.0642 −0.0294 −0.0133

The data from table 4 obviously show that the screening by nanotube band electrons is
not enough for the ground-state exciton binding energy to be less than the energy gap.

The exciton binding energies at the ground and excited states for the semiconducting
(28, 0) SWCNT calculated using the potential (4.5) for T = 550 K are listed in table 5.

Note that the screened potential (4.5) may be used either for the semiconducting SWCNTs
with narrow band gap (as zig-zag (3n, 0) SWCNTs) or for the large-diameter nanotubes (small
gaps) or (and) at rather high temperatures, because only under these conditions the linear
concentration n0 of free charged particles provides a perceptible screening. At T = 550 K,
the (28, 0) nanotube has approximately one free charged particle per micrometre of its length,
but even under these conditions the screening by free charges of the e-h interaction potential
is much stronger than the screening by the all bound electrons of semiconducting SWCNTs
(compare tables 4 and 5). Nevertheless, as follows from the same table 5, even in this case the
ground-state exciton binding energy still exceeds the energy gap.

6. Discussion

In all the above examples the binding energy of the ground state of even excitons in isolated
SWCNTs appeared to be much greater than the corresponding band gaps even with the account
of some screening effects by tubes π -electrons. This should mean that the single-electron states
in SWCNTs are unstable at least in the vicinity of the energy gap with respect to formation
of excitons. Such conclusion might seem doubtful though we came to it by applying similar
arguments as in the case of 3D large-radius excitons. There are three reasons due to which
a partial destruction of band electrons states in semiconducting SWCNTs in reality is either
absent or inconspicuous.

First, the account of dynamical screening, that is the frequency dependence of the
dielectric function, may return all the exciton levels into the band gap. This was shown
in [20], where calculations of the exciton binding energy with the static dielectric function
yielded also the exciton binding energy exceeding the energy gap. At the same time the
self-consistent calculation with a frequency-dependent dielectric function gave according to
[20] a universal ratio of the exciton binding energy to the energy gap depending only on the
resonance integral γ0 but not on the nanotube radius (it equals 0.87 if γ0 = 2.7 eV). By [20],
the exciton binding energy cannot be larger than the energy gap because of the singularity of the
frequency-dependent dielectric function ε(ω) at ω = Eg/h̄ for the frequencies, corresponding
to the direct transitions between the van Hove points of the tube single-electron spectral
density. However, actually this argument is true only if the exciton binding energy obtained
without the account of dynamical screening gets into a small vicinity of the energy of allowed
transition between such points. This is because the frequency-dependent SWCNT dielectric
function may only then become rather great. Otherwise as follows from the results of [21]
the effect of dynamical screening is too small and the exciton state with the binding energy
much greater than the energy gap transforms into a long-living resonance in the continuous
spectrum of electron–hole pairs with opposite quasi-momenta.

The second reason is the so-called environmental effect. In experimental works [4–6]
(which used the methods described in [3]) the investigated individual nanotubes were not in
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vacuum but encased in sodium dodecyl sulfate (SDS) cylindrical micelles disposed in D2O.
Because of these SDS micelles, which provided a pure hydrocarbon environment around
individual nanotubes, the high-permittivity solvent D2O did not reach nanotubes. However,
the environment of hydrophobic hydrocarbon ‘tales’ (−C12H25) of the SDS molecules has
the permittivity greater than unity. Following figure 1A from [3] we considered a simple
model of a SWCNT in a dielectric environment: a hollow, narrow, infinite cylinder with radius
R0 in a medium with the dielectric constant ε and found the potential (2.16) screened by
the medium within the framework of mentioned model under the assumption about axially
symmetrical charge localization at nanotube’s (here cylinder’s) wall. The corresponding 1D
screened potential ϕ(z) is given by

ϕ(z) = − e

πR0

∫ ∞

−∞

I0(|k|)K0(|k|) exp(ikz/R0)

[εK1(|k|)I0(|k|) + I1(|k|)K0(|k|)]|k| dk, (6.1)

where Ij (|k|) and Kj(|k|) are the modified Bessel functions of the order j of the first and
the second kind, respectively. We do not know the exact value of dielectric constant of the
pure medium, which is formed from the hydrocarbon ‘tales’ of the SDS molecules. But for
estimates we take the dielectric constants of the substances, which are also formed from similar
hydrocarbon ‘tales’, e.g., petroleum (ε � 2.1) or dodecane (ε � 2) at 293 K (this temperature
is very close to that used in [3–5]) or polyethylene (ε � 2.2–2.4). Using the potentials
(2.16) and (6.1) with ε varying in the interval 2–2.4 we have obtained that the ground-state
exciton binding energy in the nanotube (8, 0) (the energy gap equals 1.415 eV [18]) is 3.06 eV
in vacuum while with the account of the environment it runs the interval 1.33–1.06 eV and
hence gets into the corresponding energy gap and becomes close to those in [10] (about
0.86–1 eV), even without the account of static and dynamical dielectric screening of the
potential (2.16) by nanotube electrons. Recall that the results on the (8, 0) nanotube in [10]
are in good agreement with those obtained in [5] by interpolation of experimental data for
another species of nanotubes.

Further, taking the (7, 5) nanotube we compare our results with the corresponding
experimental data from [6], where individual SWCNTs were isolated in surfactant micelles of
SDS in D2O as in [3]. Our calculations for the (7, 5) nanotube in vacuum yield 2.12 eV as
the ground-state exciton binding energy, while for the same tube in the SDS environment the
binding energy calculated using the potential (6.1) gets into the interval 0.90–0.71 eV (the band
gap for the (7, 5) tube is 1.01 eV [18]) depending on ε varying from 2 to 2.4. The obtained
binding energy value is not far from that of [6] ∼0.62 eV even without the account of static
and dynamical dielectric screening of the potential (2.16) by the nanotube electrons. There is
a comparison of experimental data on the exciton binding energies in the work [6] with the
corresponding theoretical results of [11]. These results are well agreed. But again, in the work
[11] the interparticle potential includes a screening parameter denoted as κ = 2. Besides, it is
asserted in [11] that the assumption of similar Coulomb parameters for SWCNTs and phenyl-
based π -conjugated polymers, used in this work, gives smaller exciton binding energies for
SWCNTs. All the results listed in tables 1–5 of our work are related only to SWCNTs in
vacuum. So let us turn to the experimental work [22] which deals with optical properties
(photoluminescence) of SWCNTs suspended in air (near-unit dielectric constant). As follows
from [22], the relative discrepancies between the optical transition energies obtained in [22]
and those obtained in [5] are not significant (about several per cents). This result could be
expected, since according to the usual self-consistent field approximations the interaction of
a π -electron with other electrons of a nanotube should be substantially compensated in the
ground state by the interaction with the nearest ions. Evidently, the effect of this compensation
is not sensitive to an environmental screening. However, for excited states such as excitons,
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where electrons and holes are at distances of the order of tube diameter, the environmental
effect can be strong.

Note thirdly that with the advent of N excitons in the tube the additional screening effect,
stipulated by a rather great polarizability of excitons in the longitudinal electric field, appears.
The elementary estimates show that the corresponding adding to the dielectric constant is

ε ≈ 4π
Ne2

EbL
,

where Eb is the binding energy of even exciton in the ground state and L is the length of a
tube. We see that in the case of N ∼ 10 per 100 nm of nanotube length ε � 1 and therefore
the lowest exciton binding energy occurs already inside the energy gap. This blocks further
conversions of single-electron states into excitons. The shift of the forbidden band edges due
to the transformation of some single-electron states into excitons results in some enhancement
of the energy gap. As follows the optical transition energy E11 should be blueshifted as in
[22]. A coarse estimate of this shift using the elementary relation

E11 ≈ h̄2π2N2

µL2

gives E11/E11 ∼ 10−2. If the exciton gas in tubes is unstable with respect to transition into
a one-dimensional electron–hole plasma, then for the account of screening effect produced
by this plasma we can use the results of section 4. For example, for the (8, 0) tube even
10 charges per 100 nm of its length (∼0.1% of π -electrons number) reduce the ground-state
exciton binding energy to 0.12 eV and thus block spontaneous transitions to the exciton states.

Thus, we may conclude that the ground state of π -electrons in semiconducting SWCNTs
in vacuum is formed by band electrons filling all the levels up to a certain level below the gap
together with some amount of two-particle even excitations, which can form either a rare gas
of excitons or electron–hole plasma. The additional screening effect induced by the exciton
gas (or the one-dimensional e–h plasma) blocks further partial destruction of single-electron
states. The environmental effect may return the even exciton binding energies into the energy
gap and thus may remove two-particle excitations from the ground state of π -electrons in
SWCNTs.
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